已知直线所经过的定点F,直线
:
与x轴的交点是圆C的圆心,圆C恰好经过坐标原点O,设G是圆C上任意一点.
(1)求点F和圆C的方程;
(2)若直线FG与直线交于点T,且G为线段FT的中点,求直线FG被圆C所截得的弦长;
(3)在平面上是否存在一点P,使得?若存在,求出点P坐标;若不存在,请说明理由.
在中
分别为角
所对的边的边长,
(1)试叙述正弦或余弦定理并证明之;
(2)设,求证:
.
一笼子中装有2只白猫,3只黑猫,笼门打开每次出来一只猫,每次每只猫都有可能出来.
(1)第三次出来的是只白猫的概率;
(2)记白猫出来完时笼中所剩黑猫数为,试求
的概率分布列及期望.
设函数
(1)当时,求曲线
处的切线方程;
(2)当时,求
的极大值和极小值;
(3)若函数在区间
上是增函数,求实数
的取值范围.
已知椭圆的长轴长为,焦点是
,点
到直线
的距离为
,过点
且倾斜角为锐角的直线
与椭圆交于A、B两点,使得
.
(1)求椭圆的标准方程; (2)求直线l的方程.
已知直三棱柱中,
,
,
是
和
的交点, 若
.
(1)求的长;(2)求点
到平面
的距离;
(3)求二面角的平面角的正弦值的大小.