游客
题文

(本题12分)△ABC中,∠A=∠B=30°,AB=.把△ABC放在平面直角坐标系中,使AB的中点位于坐标原点O (如图),△ABC可以绕点O作任意角度的旋转.

(1) 当点B在第一象限,纵坐标是时,求点B的横坐标;
(2) 如果抛物线的对称轴经过点C,请你探究:
①当时,AB两点是否都在这条抛物线上?并说明理由;
②设,是否存在这样的m的值,使AB两点不可能同时在这条抛物线上?若存在,直接写出m的值;若不存在,请说明理由.

科目 数学   题型 解答题   难度 中等
知识点: 二次函数在给定区间上的最值
登录免费查看答案和解析
相关试题

A B 两种机器人搬运大米, A 型机器人比 B 型机器人每小时多搬运20袋大米, A 型机器人搬运700袋大米与 B 型机器人搬运500袋大米所用时间相等.求 A B 型机器人每小时分别搬运多少袋大米.

端午节放假期间,小明和小华准备到宜宾的蜀南竹海(记为 A ) 、兴文石海(记为 B ) 、夕佳山民居(记为 C ) 、李庄古镇(记为 D ) 的一个景点去游玩,他们各自在这四个景点中任选一个,每个景点被选中的可能性相同.

(1)小明选择去蜀南竹海旅游的概率为  

(2)用树状图或列表的方法求小明和小华都选择去兴文石海旅游的概率.

如图,已知点 B E C F 在同一条直线上, AB = DE A = D AC / / DF .求证: BE = CF

如图,已知抛物线 y = x 2 + bx + c 的图象经过点 A ( 1 , 0 ) B ( 3 , 0 ) ,与 y 轴交于点 C ,抛物线的顶点为 D ,对称轴与 x 轴相交于点 E ,连接 BD

(1)求抛物线的解析式.

(2)若点 P 在直线 BD 上,当 PE = PC 时,求点 P 的坐标.

(3)在(2)的条件下,作 PF x 轴于 F ,点 M x 轴上一动点, N 为直线 PF 上一动点, G 为抛物线上一动点,当以点 F N G M 四点为顶点的四边形为正方形时,求点 M 的坐标.

如图, AB O 的直径,点 D E O 上, A = 2 BDE ,点 C AB 的延长线上, C = ABD

(1)求证: CE O 的切线;

(2)若 BF = 2 EF = 13 ,求 O 的半径长.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号