.(本小题满分12分)
如图,已知在⊙O中,直径AB=10,点E是OA上任意一点,过E作弦CD⊥AB,点F是弧BC上一点,连结AF交CE于H,连结AC、CF、BF。(1)请你找出图中的相似三角形,并对其中的一对相似三角形进行证明;
(2)若AE:BE=1:4,求CD长。
(3)在(2)的条件下,求
的值。
用反证法证明“三角形的三个内角中,至少有一个内角小于或等于60°”
证明:假设所求证的结论不成立,即
∠A 60°,∠B60°,∠C60°,
则∠A+∠B+∠C > 。
这与相矛盾。
∴不成立。
∴。
为了降低能源消耗,减少环境污染,国务院办公厅下发了“关于限制生产销售使用塑料购物袋的通知”,并从2008年6月1日起正式实施.某中学八年级共有400名学生。学校为了增强学生的环保意识,在本年级进行了一次环保知识测验.为了了解这次测验的成绩状况,从中抽取了50名学生的成绩,将所得数据整理后,画出频数分布直方图如图所示.
(1)第五个小组的频数和频率各是多少?
(2) 这50名学生的成绩的中位数在哪一组?
(3)这次测验中,八年级全体学生成绩在59.5~69.5 中的人数约是多少?
选择适当方法解方程:
①x2=3x②
△ABC中,AB=1,AC=2,D是BC中点,AE平分∠BAC交BC于E,且DF∥AE.求CF的长.
已知抛物线y=ax2+bx+c ,当x=0时,有最小值为1 ;且在直线y=2上截得的线段长为4 .
(1)求此抛物线的解析式;
(2)若点P是抛物线的任意一点,记点P到X轴的距离为d1,点P 与点 F (0,2)的距离为d 2,猜想d1、 d 2的大小关系,并证明;
(3)若直线PF交此抛物线于另一点Q(异于P点)。 试判断以PQ为直径的圆与x 轴的位置关系,并说明理由。