如图,已知点F(2,0),点P在y 轴上运动,过P作PM⊥PF交x轴于M,延长MP到点N,使|PN|=|PM|.
⑵ 求动点N的轨迹C的方程;
⑵在⑴中所求的曲线C上有三点A(x1,y1),B(x2,y2),D(x3,y3),若|AF|、|BF|、|DF|成等差数列,且线段AD的中垂线与x轴的交点为(6,0),求点B的坐标。
如图,在四棱锥中,底面
是正方形,侧棱
⊥底面
,
,
是
的中点,作
交
于点
.
(1)求证:平面
;
(2)求二面角的正弦值.
已知数列的前
项和为
,且
.
(1)求数列的通项公式;
(2)设,求数列
的前
项和
.
设函数.
(1)求的值域;
(2)记的内角
的对边长分别为
,若
,
,求
的值.
已知函数(
R),
为其导函数,且
时
有极小值
.
(1)求的单调递减区间;
(2)若,
,当
时,对于任意x,
和
的值至少有一个是正数,求实数m的取值范围;
(3)若不等式(
为正整数)对任意正实数
恒成立,求
的最大值.
如果数列满足:
且
,则称数列
为
阶“归化数列”.
(1)若某4阶“归化数列”是等比数列,写出该数列的各项;
(2)若某11阶“归化数列”是等差数列,求该数列的通项公式;
(3)若为n阶“归化数列”,求证:
.