本题共有3个小题,第1小题满分4分,第2小题满分6分,
第3小题满分8分.
记函数在区间D上的最大值与最小值分别为
与
.设函数
,
.
.
(1)若函数在
上单调递减,求
的取值范围;
(2)若.令
.
记.试写出
的表达式,并求
;
(3)令(其中I为
的定义域).若I恰好为
,求b的取值范围,并求
.
平面内与两定点连线的斜率之积等于非零常数
的点的轨迹,加上
两点,所成的曲线
可以是圆,椭圆或双曲线.
(Ⅰ)求曲线的方程,并讨论
的形状与
值的关系;
(Ⅱ)当时,对应的曲线为
;对给定的
,对应的曲线为
,若曲线
的斜率为
的切线与曲线
相交于
两点,且
(
为坐标原点),求曲线
的方程.
如图,四棱锥P-ABCD中,底面ABCD是平行四边形,∠ACB=90°,平面PAD⊥平面ABCD,
PA=BC=1,PD=AB=,E、F分别为线段PD和BC的中点.
(Ⅰ) 求证:CE∥平面PAF;
(Ⅱ)在线段BC上是否存在一点G,使得平面PAG和平面PGC所成二面角的大小为60°?若存在,试确定G的位置;若不存在,请说明理由.
生产A,B两种元件,其质量按测试指标划分为:指标大于或等于为正品,小于
为次品.现随机抽取这两种元件各
件进行检测,检测结果统计如下:
测试指标 |
![]() |
![]() |
![]() |
![]() |
![]() |
元件A |
![]() |
![]() |
![]() |
![]() |
![]() |
元件B |
![]() |
![]() |
![]() |
![]() |
![]() |
(Ⅰ)试分别估计元件A,元件B为正品的概率;
(Ⅱ)生产一件元件A,若是正品可盈利40元,若是次品则亏损5元;生产一件元件B,若是正品可盈利50元,若是次品则亏损10元.在(Ⅰ)的前提下,
(ⅰ)记为生产1件元件A和1件元件B所得的总利润,求随机变量
的分布列和数学期望;
(ⅱ)求生产5件元件B所获得的利润不少于140元的概率.
在公比为的等比数列
中,
与
的等差中项是
.
(Ⅰ)求的值;
(Ⅱ)若函数,
,的一部分图像如图所示,
,
为图像上的两点,设
,其中
与坐标原点
重合,
,求
的值.
已知数列,
满足:
.
(1)若,求数列
的通项公式;
(2)若,且
.
① 记,求证:数列
为等差数列;
② 若数列中任意一项的值均未在该数列中重复出现无数次,求首项
应满足的条件.