本题共有3个小题,第1小题满分4分,第2小题满分6分,
第3小题满分8分.
记函数在区间D上的最大值与最小值分别为
与
.设函数
,
.
.
(1)若函数在
上单调递减,求
的取值范围;
(2)若.令
.
记.试写出
的表达式,并求
;
(3)令(其中I为
的定义域).若I恰好为
,求b的取值范围,并求
.
(本小题满分10分)选修4—5:不等式选讲
已知函数.
(Ⅰ)解关于的不等式
;
(Ⅱ)设的解集非空,求实数
的取值范围.
(本小题满分分)选修
:坐标系与参数方程选讲
在直角坐标系中,以原点为极点,轴的正半轴为极轴建立极坐标系,已知曲线
,过点
的直线
的参数方程为
(
为参数),
与
分别交于
.
(Ⅰ)写出的平面直角坐标系方程和
的普通方程;
(Ⅱ)若成等比数列,求
的值.
(本小题满分10分)选修4-1:几何证明选讲
如图,在中,
是
的角平分线,
的外接圆交
于点
,
.
(Ⅰ)求证:;
(Ⅱ)当,
时,求
的长.
(本小题满分共12分)已知.
设
.
(Ⅰ)求在
上的最大值.
(Ⅱ)当时,试比较
与
的大小,并证明.
(本小题满分12分)已知点为
轴上的动点,点
为
轴上的动点.点
为定点,且满足
,
(Ⅰ)求动点的轨迹
的方程.
(Ⅱ)是
上的两个动点,
为
的中垂线,求当
的斜率为2时,
在
轴上的截距
的范围.