如图,在直三棱柱中,
,
,
分别为
,
的中点,四边形
是边长为
的正方形.
(Ⅰ)求证:∥平面
;
(Ⅱ)求证:平面平面
.
在正方体ABCD-A1B1C1D1中,E是CD的中点,连接AE并延长与BC的延长线交于点F,连接BE并延长交AD的延长线于点G,连接FG.
求证:直线FG⊂平面ABCD且直线FG∥直线A1B1.
如图,在三棱锥中,平面
平面
,
为等边三角形,
且
,
,
分别为
的中点.
(1)求证:平面
;
(2)求三棱锥的体积.
空间四边形ABCD中,AB=CD且AB与CD所成的角为60°,E、F分别是BC、AD的中点,求EF与AB所成角的大小.
如图所示,在直四棱柱中,
,
,点
是棱
上的一点.
(1)求证:平面
;
(2)求证:;
(3)是否存在点,使得平面
⊥平面
?若存在,试确定点
的位置,并给出证明;若不存在,说明理由.
如图(1)所示,在梯形中,
,
,且
,如图(2)沿
将四边形
折起,使得平面
与平面
垂直,
为
的中点.
(1) 求证:平面平面
;
(2) 求三棱锥的体积.
(3)求二面角的正切值