已知抛物线y2 =" 2px" (p > 0)的交点为F,过引直线l交此抛物线于A,B两点.
(Ⅰ)若直线AF的斜率为2,求直线BF的斜率;
(Ⅱ)若p=2,点M在抛物线上,且,求t的取值范围.
某公司招聘员工,先由两位专家面试,若两位专家都同意通过,则视作通过初审予以录用;若两位专家都未同意通过,则视作未通过初审不予录用;当这两位专家意见不一致时,再由第三位专家进行复审,若能通过复审则予以录用,否则不予录用.设应聘人员获得每位初审专家通过的概率为0.5,复审能通过的概率为0.3,各专家评审的结果相互独立.
(Ⅰ)求某应聘人员被录用的概率;
(Ⅱ)若4人应聘,设X为被录用的人数,试求随机变量X的分布列和数学期望.
已知正三棱柱ABC –A1B1C1中,AB = 2,AA1 =,点F,E分别是边A1C1和侧棱BB1的中点.
(Ⅰ)证明:FB⊥平面AEC;
(Ⅱ)求二面角F-AE-C的余弦值.
已知等比数列{an}的前n项和为Sn,A1="3," 且3S1 , 2S2 , S3成等差数列.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设bn=log3an,求Tn=b1b2 - b2b3 + b3b4 - b4b5 + … + b2n-1b2n - b2nb2n+1
已知函数
(Ⅰ)当时,求曲线
在点
处的切线方程;
(Ⅱ)当时,若
在区间
上的最小值为
,求
的取值范围;
(Ⅲ)若对任意,且
恒成立,求
的取值范围.