(本题18分,第(1)小题4分;第(2)小题6分;第(3)小题8分)
如图,已知椭圆:
过点
,上、下焦点分别为
、
,
向量.直线
与椭圆交于
两点,线段
中点为
.
(1)求椭圆的方程;
(2)求直线的方程;
(3)记椭圆在直线下方的部分与线段
所围成的平面区域(含边界)为
,若曲线
与区域
有公共点,试求
的最小值.
(本小题满分14分)已知数列的前
项和为
,且满足
,
(
且
).
(1)求证:数列是等差数列;
(2)求和
.
(本小题满分14分)如图,菱形的边长为
,
,
.将菱形
沿对角线
折起,得到三棱锥
,点
是棱
的中点,
.
(1)求证:平面
;
(2)求三棱锥的体积.
(本小题满分12分)移动公司在国庆期间推出4G套餐,对国庆节当日办理套餐的客户进行优惠,优惠方案如下:选择套餐一的客户可获得优惠200元,选择套餐二的客户可获得优惠500元,选择套餐三的客户可获得优惠300元. 国庆节当天参与活动的人数统计结果如图所示,现将频率视为概率.
(1)求某人获得优惠金额不低于300元的概率;
(2)若采用分层抽样的方式从参加活动的客户中选出6人,再从该6人中随机选出两人,求这两人获得相等优惠金额的概率.
(本小题满分12分)设向量,
,
.
(1)若,求
的值;
(2)设函数,求
的最大值.
(本小题满分14分)已知函数,
,设曲线
在点
处的切线方程为
.如果对任意的
,均有:
①当时,
;
②当时,
;
③当时,
,
则称为函数
的一个“ʃ-点”.
(1)判断是否是下列函数的“ʃ-点”:
①; ②
.(只需写出结论)
(2)设函数.
(ⅰ)若,证明:
是函数
的一个“ʃ-点”;
(ⅱ)若函数存在“ʃ-点”,直接写出
的取值范围.