(本题满分14分,第1小题满分7分,第2小题满分7分)
为了研究某种癌细胞的繁殖规律和一种新型抗癌药物的作用,将癌细胞注入一只小白鼠体内进行实验,经检测,癌细胞的繁殖规律与天数的关系如下表.已知这种癌细胞在小白鼠体内的个数超过时小白鼠将会死亡,注射这种抗癌药物可杀死其体内癌细胞的
.
天数![]() |
1 |
2 |
3 |
4 |
5 |
6 |
7 |
… |
癌细胞个数![]() |
1 |
2 |
4 |
8 |
16 |
32 |
64 |
… |
(1)要使小白鼠在实验中不死亡,第一次最迟应在第几天注射该种药物?(精确到1天)
(2)若在第10天,第20天,第30天,……给小白鼠注射这种药物,问第38天小白鼠是否仍然存活?请说明理由.
已知两点,直线AM、BM相交于点M,且这两条直线的斜率之积为
.
(Ⅰ)求点M的轨迹方程;
(Ⅱ)记点M的轨迹为曲线C,曲线C上在第一象限的点P的横坐标为1,直线PE、PF与圆(
)相切于点E、F,又PE、PF与曲线C的另一交点分别为Q、R.
求△OQR的面积的最大值(其中点O为坐标原点).
已知函数,
.
(Ⅰ)若与
在
处相切,试求
的表达式;
(Ⅱ)若在
上是减函数,求实数
的取值范围;
(Ⅲ)证明不等式:.
四棱锥,底面
为平行四边形,侧面
底面
.已知
,
,
,
为线段
的中点.
(Ⅰ)求证:平面
;
(Ⅱ)求面与面
所成二面角大小.
某学校的三个学生社团的人数分布如下表(每名学生只能参加一个社团):
围棋社 |
舞蹈社 |
拳击社 |
|
男生 |
5 |
10 |
28 |
女生 |
15 |
30 |
m |
学校要对这三个社团的活动效果进行抽样调查,按分层抽样的方法从三个社团成员中抽取18人,结果拳击社被抽出了6人.
(Ⅰ)求拳击社团被抽出的6人中有5人是男生的概率;
(Ⅱ)设拳击社团有X名女生被抽出,求X的分布列及数学期望.
已知函数,记函数
的最小正周期为
,向量
,
(
),且
.
(Ⅰ)求在区间
上的最值;
(Ⅱ)求的值.