游客
题文

本题共有2个小题,第1小题满分6分,第2小题满分8分.
如图1,是某地一个湖泊的两条互相垂直的湖堤,线段和曲线段分别是湖泊中的一座栈桥和一条防波堤。为观光旅游的需要,拟过栈桥上某点分别修建与平行的栈桥,且以为边建一个跨越水面的三角形观光平台。建立如图2所示的直角坐标系,测得线段的方程是,曲线段的方程是,设点的坐标为,记。(题中所涉及的长度单位均为米,栈桥和防波堤都不计宽度)
(1)求的取值范围;
(2)试写出三角形观光平台面积关于的函数解析式,并求出该面积的最小值

科目 数学   题型 解答题   难度 容易
知识点: 三面角、直三面角的基本性质
登录免费查看答案和解析
相关试题

已知等比数列{an}满足a1+a6=11,且a3a4=.
(1)求数列{an}的通项an
(2)如果至少存在一个自然数m,恰使,am+1+这三个数依次成等差数列,问这样的等比数列{an}是否存在?若存在,求出通项公式;若不存在,请说明理由.

已知二次函数f(x)的二次项系数为a,且不等式f(x)>-2x的解集为(1,3).
(1)若方程f(x)+6a=0有两个相等的根,求f(x)的解析式;
(2)若f(x)的最大值为正数,求a的取值范围.

某商场预计全年分批购入每台价值为2 000元的电视机共3 600台.每批都购入x台(x∈N*),且每批均需付运费400元.贮存购入的电视机全年所付保管费与每批购入电视机的总价值(不含运费)成正比.若每批购入400台,则全年需用去运输和保管总费用43 600元.现在全年只有24 000元资金用于支付这笔费用,请问能否恰当安排每批进货的数量使资金够用?写出你的结论,并说明理由.

在△ABC中,三内角A、B、C成等差数列,角B的对边b为1,求证:1<a+c≤2.

集合A={x|x2-5x+4≤0},B={x|x2-2ax+a+2≤0},若BA且B≠,求a的取值范围.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号