(本小题满分15分)因发生意外交通事故,一辆货车上的某种液体泄漏到一渔塘中.为了治污,根据环保部门的建议,现决定在渔塘中投放一种可与污染液体发生化学反应的药剂.已知每投放,且
个单位的药剂,它在水中释放的浓度
(克/升)随着时间
(天)变化的函数关系式近似为
,其中
.
若多次投放,则某一时刻水中的药剂浓度为每次投放的药剂在相应时刻所释放的浓度之和.根据经验,当水中药剂的浓度不低于4(克/升)时,它才能起到有效治污的作用.
(1)若一次投放4个单位的药剂,则有效治污时间可达几天?
(2)若第一次投放2个单位的药剂,6天后再投放个单位的药剂,要使接下来的4天中能够持续有效治污,试求
的最小值.(精确到0.1,参考数据:
取1.4)
椭圆的对称中心在坐标原点,一个顶点为,右焦点F与点
的距离为2。
(1)求椭圆的方程;
(2)斜率的直线
与椭圆相交于不同的两点M,N满足
,求直线l的方程。
设函数.
(1)求f(x)的单调区间和极值;
(2)关于的方程f(x)=a在区间
上有三个根,求a的取值范围.
已知抛物线.命题p: 直线l1:
与抛物线C有公共点.命题q: 直线l2:
被抛物线C所截得的线段长大于2.若
为假,
为真,求k的取值范围.
已知圆C过原点且与相切,且圆心C在直线
上.
(1)求圆的方程;(2)过点的直线l与圆C相交于A,B两点, 且
, 求直线l的方程.
已知函数。
(1)若的单调减区间是
,求实数a的值;
(2)若函数在区间
上都为单调函数且它们的单调性相同,求实数a的取值范围;
(3)a、b是函数的两个极值点,a<b,
。求证:对任意的
,不等式
成立.