(本小题满分14分)
已知二次函数的图象过点
,且函数对称轴方程为
.
(Ⅰ)求函数的解析式;
(Ⅱ)设函数,求
在区间
上的最小值
;
(Ⅲ)探究:函数的图象上是否存在这样的点,使它的横坐标是正整数,纵坐标是一个完全平方数?如果存在,求出这样的点的坐标;如果不存在,请说明理由.
如图是我国2008年至2014年生活垃圾无害化处理量(单位:亿吨)的折线图.
注:年份代码 分别对应年份 .
(Ⅰ)由折线图看出,可用线性回归模型拟合 与 的关系,请用相关系数加以证明;
(Ⅱ)建立 关于 的回归方程(系数精确到 ,预测2016年我国生活垃圾无害化处理量.
附注:
参考数据: , , , .
参考公式:相关系数 ,
回归方程 中斜率和截距的最小二乘估计公式分别为:
, .
已知数列 的前 项和 ,其中 .
(1)证明 是等比数列,并求其通项公式;
(2)若 ,求 .
已知函数 .
(Ⅰ)在图中画出 的图象;
(Ⅱ)求不等式 的解集.
在直角坐标系 中,曲线 的参数方程为 为参数, .在以坐标原点为极点, 轴正半轴为极轴的极坐标系中,曲线 .
(Ⅰ)说明 是哪种曲线,并将 的方程化为极坐标方程;
(Ⅱ)直线 的极坐标方程为 ,其中 满足 ,若曲线 与 的公共点都在 上,求 .
如图, 是等腰三角形, .以 为圆心, 为半径作圆.
(Ⅰ)证明:直线 与 相切;
(Ⅱ)点 , 在 上,且 , , , 四点共圆,证明: .