游客
题文

(本小题满分14分)
已知二次函数的图象过点,且函数对称轴方程为.
(Ⅰ)求函数的解析式;
(Ⅱ)设函数,求在区间上的最小值
(Ⅲ)探究:函数的图象上是否存在这样的点,使它的横坐标是正整数,纵坐标是一个完全平方数?如果存在,求出这样的点的坐标;如果不存在,请说明理由.

科目 数学   题型 解答题   难度 容易
知识点: 二次剩余
登录免费查看答案和解析
相关试题

如图是我国2008年至2014年生活垃圾无害化处理量(单位:亿吨)的折线图.

注:年份代码 1 - 7 分别对应年份 2008 - 2014

(Ⅰ)由折线图看出,可用线性回归模型拟合 y t 的关系,请用相关系数加以证明;

(Ⅱ)建立 y 关于 t 的回归方程(系数精确到 0 . 01 ) ,预测2016年我国生活垃圾无害化处理量.

附注:

参考数据: i = 1 7 y i = 9 . 32 i = 1 7 t i y i = 40 . 17 i = 1 7 ( y i - y ̅ ) 2 = 0 . 55 7 2 . 646

参考公式:相关系数 r = i = 1 n ( t i - t ̅ ) ( y i - y ̅ ) i = 1 n ( t i - t ̅ ) 2 i = 1 n ( y i - y ̅ ) 2

回归方程 y ̂ = a ̂ + b ̂ t 中斜率和截距的最小二乘估计公式分别为:

b ̂ = i = 1 n ( t i - t ̅ ) ( y i - y ̅ ) i = 1 n ( t i - t ̅ ) 2 a ̂ = y ̅ - b ̂ t ̅

已知数列 { a n } 的前 n 项和 S n = 1 + λ a n ,其中 λ 0

(1)证明 { a n } 是等比数列,并求其通项公式;

(2)若 S 5 = 31 32 ,求 λ

已知函数 f ( x ) = | x + 1 | - | 2 x - 3 |

(Ⅰ)在图中画出 y = f ( x ) 的图象;

(Ⅱ)求不等式 | f ( x ) | > 1 的解集.

在直角坐标系 xOy 中,曲线 C 1 的参数方程为 x = a cos t y = 1 + a sin t ( t 为参数, a > 0 ) .在以坐标原点为极点, x 轴正半轴为极轴的极坐标系中,曲线 C 2 : ρ = 4 cos θ

(Ⅰ)说明 C 1 是哪种曲线,并将 C 1 的方程化为极坐标方程;

(Ⅱ)直线 C 3 的极坐标方程为 θ = α 0 ,其中 α 0 满足 tan α 0 = 2 ,若曲线 C 1 C 2 的公共点都在 C 3 上,求 a

如图, ΔOAB 是等腰三角形, AOB = 120 ° .以 O 为圆心, 1 2 OA 为半径作圆.

(Ⅰ)证明:直线 AB O 相切;

(Ⅱ)点 C D O 上,且 A B C D 四点共圆,证明: AB / / CD

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号