游客
题文

已知椭圆的左、右焦点分别为,离心率,A为右顶点,K为右准线与X轴的交点,且.
(I)求椭圆的标准方程;
(II)设椭圆的上顶点为B,问是否存在直线l,使直线l交椭圆于C,D两点,且椭圆的左焦点巧恰为ΔBCD的垂心?若存在,求出l的方程r若不存在,请说明理由.

科目 数学   题型 解答题   难度 较易
登录免费查看答案和解析
相关试题

如图所示,平面ABC,CE//PA,PA=2CE=2。
(1)求证:平面平面APB;(2)求二面角A—BE—P的正弦值。

(本题满分18分,第(1)小题6分,第(2)小题6分,第(3)小题6分)
若数列满足:是常数),则称数列为二阶线性递推数列,且定义方程为数列的特征方程,方程的根称为特征根; 数列的通项公式均可用特征根求得:
①若方程有两相异实根,则数列通项可以写成,(其中是待定常数);
②若方程有两相同实根,则数列通项可以写成,(其中是待定常数);
再利用可求得,进而求得
根据上述结论求下列问题:
(1)当)时,求数列的通项公式;
(2)当)时,求数列的通项公式;
(3)当)时,记,若能被数整除,求所有满足条件的正整数的取值集合.

(本题满分16分,第(1)小题8分,第(2)小题8分)
己知双曲线的中心在原点,右顶点为(1,0),点、Q在双曲线的右支上,点,0)到直线的距离为1.
(1)若直线的斜率为且有,求实数的取值范围;
(2)当时,的内心恰好是点,求此双曲线的方程.

(本题满分16分,第(1)小题6分,第(2)小题10分)

如图,已知点是边长为的正三角形的中心,线段经过点,并绕点转动,分别交边于点;设,其中
(1)求表达式的值,并说明理由;
(2)求面积的最大和最小值,并指出相应的的值.

(本题满分14分,第(1)小题6分,第(2)小题8分)
设全集,关于的不等式)的解集为
(1)分别求出当时的集合
(2)设集合,若中有且只有三个元素,求实数的取值范围.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号