.(本小题满分l 3分)某种商品原来每件售价为25元,年销售量8万件.
(I)据市场调查,若价格每提高1元,销售量将相应减少2000件,要使销售的总收人不低于原收入,该商品每件定价最多为多少元?
(Ⅱ)为了扩大该商品的影响力,提高年销售量.公司决定明年对该商品进行全面技术革新和营销策略改革,并提高定价到x元.公司拟投入 (x2—600)万元作为技改费用,投入50万元作为固定宣传费用,投入
x万元作为浮动宣传费用.试问:当该商品明年的销售量a至少应达到多少万件时,才可能使明年的销售收入不低于原收入与总投入之和?并求出此时商品的每件定价.
甲、乙、丙三人独立参加某企业的招聘考试,根据三人的专业知识、应试表现、工作经验等综合因素,三人被招聘的概率依次为用
表示被招聘的人数。
(1)求三人中至少有一人被招聘的概率;
(2)求随机变量的分布列和数学期望。
已知函数的一系列对应值如表:
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
(1)求的解析式;
(2)若在中,
,
,
(A为锐角),求
的面积.
已知函数,(
为实常数)
(1)若,将
写出分段函数的形式,并画出简图,指出其单调递减区间;
(2)设在区间
上的最小值为
,求
的表达式。
已知向量,
且
,
函数图象上相邻两条对称轴之间的距离是
,
(1)求值;
(2)求函数的单调递减区间;
(3)设函数,若
为偶函数,,求
的最大值及
相应的值
已知函数,
(1)求的对称轴方程;
(2)用“五点法”画出函数在一个周期内的简图;
(3)若,设函数
,求
的值域。