(本小题满分14分)在平面直角坐标系xOy中,已知点A(-1,1),P是动点,且三角形POA的三边所在直线的斜率满足kOP+kOA=kPA.
( I)求点P的轨迹C的方程;
(Ⅱ)若Q是轨迹C上异于点P的一个点,且,直线OP与QA交于点M,问:是否存在点P使得△PQA和△PAM的面积满足
S△PQA=2S△PAM?若存在,求出点P的坐标;若
不存在,说明理由.
(本小题满分12分)已知单调递增的等比数列满足:
,且
是
的等差中项.
(Ⅰ)求数列的通项公式;
(Ⅱ)若,
,求
成立的正整数
的最小值.
如图,在三棱锥中,平面
平面
,
于点
,且
,
,
(1)求证:
(2)
(3)若,
,求三棱锥
的体积.
(本小题满分12分)某市统计局就某地居民的月收入调查了 10 000 人,并根据所得数据画出样本的频率分布直方图(每个分组包括左端点,不包括右端点,如第一组表示收入在[1 000,1500)).
(Ⅰ)求居民收入在[3 000,3 500)的频率;
(Ⅱ)根据频率分布直方图算出样本数据的中位数;
(Ⅲ)为了分析居民的收入与年龄、职业等方面的关系,必须按月收入再从这 10 000 人中按分层抽样方法抽出 100 人作进一步分析,则月收入在[2 500,3 000)的这段应抽取多少人?
(本小题满分12分)已知函数
(Ⅰ)求函数的对称中心;
(Ⅱ)已知△ABC内角的对边分别为
,且
,
,
,求
(本小题满分14分)已知椭圆的右焦点为
,且点
在椭圆
上,
为坐标原点.
(Ⅰ)求椭圆的标准方程;
(Ⅱ)设过定点的直线
与椭圆
交于不同的两点
、
,且
为锐角,求直线
的斜率
的取值范围;
(Ⅲ)过椭圆上异于其顶点的任一点
,作圆
的两条切线,切点分别为
(
不在坐标轴上),若直线
在
轴、
轴上的截距分别为
、
,证明:
为定值.