(本小题满分12分)如图,是圆
的直径,点
在圆
上,
,
交
于点
,
平面
,
,
.
(1)证明:;
(2)求平面与平面
所成的锐二面角的余弦值.
(本题12分)已知某几何体的俯视图是如图所示的矩形,正视图(或称主视图)是一个底边长为8、高为4的等腰三角形,左视图(或称侧视图)是一个底边长为6、高为4的等腰三角形.
(1)求该几何体的体积V;
(2)求该几何体的侧面积S.
(本题12分)在⊿ABC中,∠C的平分线所在的直线为x轴,若A、B坐标分别为A(3,2)、B(5,-3),求点C的坐标,并求⊿ABC的面积
数列,且
,
为
的前
项和.
(Ⅰ)求证:数列是等比数列,并求
的通项公式;
(Ⅱ)如果对任意,不等式
恒成立,求实数
的取值范围.
已知抛物线的焦点为F,椭圆C:
的离心率为
,
是它们的一个交点,且
.
(Ⅰ)求椭圆C的方程;
(Ⅱ)已知,点A,B为椭圆
上的两点,且弦AB不平行于对称轴,
是
的中点,试探究
是否为定值,若不是,请说明理由。
某工厂生产甲、乙两种产品,已知生产每吨甲、乙两种产品所需煤、电力、劳动力、获得利润及每天资源限额(最大供应量)如下表所示:
![]() 消耗量 资源 |
甲产品(每吨) |
乙产品(每吨) |
资源限额(每天) |
煤(t) |
9 |
4 |
360 |
电力(kw·h) |
4 |
5 |
200 |
劳动力(个) |
3 |
10 |
300 |
利润(万元) |
6 |
12 |
问:每天生产甲、乙两种产品各多少吨,获得利润总额最大?