(本题满分18分) 本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分8分.
设,对于项数为
的有穷数列
,令
为
中最大值,称数列
为
的“创新数列”.例如数列
3,5,4,7的创新数列为3,5,5,7.
考查自然数的所有排列,将每种排列都视为一个有穷数列
.
(1)若,写出创新数列为3,4,4,4的所有数列
;
(2)是否存在数列的创新数列为等比数列?若存在,求出符合条件的创新数列;若不存在,请说明理由.
(3)是否存在数列,使它的创新数列为等差数列?若存在,求出满足所有条件的数列
的个数;若不存在,请说明理由.
已知函数.
(1)求函数的单调区间
(2)函数的图象在
处切线的斜率为
若函数
在区间(1,3)上不是单调函数,求m的取值范围
已知函数
(1)解关于的不等式
(2)若,
的解集非空,求实数m的取值范围
在平面直角坐标系xOy中,以坐标原点O为极点x轴的正半轴为极轴建立极坐标系, 曲线C1的极坐标方程为:
(1)求曲线C1的普通方程
(2)曲线C2的方程为,设P、Q分别为曲线C1与曲线C2上的任意一点,求|PQ|的最小值
已知函数
(1)当时,求
的解集
(2)若关于的不等式
的解集是
,求
的取值范围
设函数
(Ⅰ)求的单调区间和极值;
(Ⅱ)若关于的方程
有3个不同实根,求实数a的取值范围.
(Ⅲ)已知当恒成立,求实数k的取值范围.