(本小题满分14分)
已知曲线在点
处的切线斜率为
(1)求的极值;
(2)设在(-∞,1)上是增函数,求实数
的取值范围;
(3)若数列满足
,求证:对一切
(本小题满分12分)
在平面直角坐标系中有两定点
,
,若动点M满足
,设动点M的轨迹为C。
(1)求曲线C的方程;
(2)设直线交曲线C于A、B两点,交直线
于点D,若
,证明:D为AB的中点。
(本小题满分12分)
某同学参加3门课程的考试,假设该同学第一门课程取得优秀成绩的概率为。第二、第三门课程取得优秀成绩的概率均为
,且不同课程是否取得优秀成绩相互独立。
(1)求该生恰有1门课程取得优秀成绩的概率;
(2)求该生取得优秀成绩的课程门数X的期望。
(本小题满分12分)
已知四棱锥P—ABCD中,平面ABCD,底面ABCD为菱形,
,AB=PA=2,E、F分别为BC、PD的中点。
(1)求证:PB//平面AFC;
(2)求平面PAE与平面PCD所成锐二面角的余弦值。
(本小题满分12分)
已知等差数列是递增数列,且满足
(1)求数列的通项公式;
(2)令,求数列
的前
项和