(本小题满分10分)选修4—4:坐标系与参数方程
在平面直角坐标系中,曲线
的参数方程为
(
为参数),以坐标原点
为极点,
轴的正半轴为极轴建立极坐标系,得曲线
的极坐标方程为
(
).
(1)化曲线、
的方程为普通方程,并说明它们分别表示什么曲线;
(2)设曲线与
轴的一个交点的坐标为
(
),经过点
作曲线
的切线
,求切线
的方程.
【选修4-5:不等式选讲】
已知函数.
(1)请写出函数在每段区间上的解析式,并在图上的直角坐标系中作出函数
的图象;
(2)若不等式对任意的实数
恒成立,求实数
的取值范围.
【选修4-4:坐标系与参数方程】
已知曲线的参数方程为:
为参数),直线
的参数方程为:
为参数),点
,直线
与曲线
交于
两点.
(1)写出曲线和直线
在直角坐标系下的标准方程;
(2)求的值.
【选修4-1:几何证明选讲】
如图,在中,
于
,
于
,
交
于点
,若
,
.
(1)求证:;
(2)求线段的长度.
已知函数.
(1)若恒成立,试确定实数
的取值范围;
(2)证明:.
椭圆,作直线
交椭圆于
两点,
为线段
的中点,
为坐标原点,设直线
的斜率为
,直线
的斜率为
,
.
(1)求椭圆的离心率;
(2)设直线与
轴交于点
,且满足
,当
的面积最大时,求椭圆
的方程.