(本小题满分14分)现有一张长为80cm,宽为60cm的长方形铁皮ABCD,准备用它做成一只无盖长方体铁皮盒,要求材料利用率为100%,不考虑焊接处损失。如图,若长方形ABCD的一个角剪下一块铁皮,作为铁皮盒的底面,用余下材料剪拼后作为铁皮盒的侧面,设长方体的底面边长为x (cm),高为y (cm),体积为V (cm3)
(1)求出x 与 y 的关系式;
(2)求该铁皮盒体积V的最大值;
如下图所示,椭圆的左顶点为
,
是椭圆
上异于点
的任意一点,点
与点
关于点
对称.
(1)若点的坐标为
,求
的值;
(2)若椭圆上存在点
,使得
,求
的取值范围.
已知函数.
(1)求函数的单调区间和极值;
(2)若对
上恒成立,求实数
的取值范围.
已知关于x的一元二次函数
(1)设集合P={1,2,3}和Q={-1,1,2,3,4},分别从集合P和Q中随机取一个数作为和
,
求函数在区间[
上是增函数的概率;
(2)设点(,
)是区域
内的随机点,求函数
上是增函数的概率.
在直三棱柱ABC-A1B1C1中,已知AB=5,AC=4,BC=3,AA1=4,点D在棱AB上.
(1)求证:AC⊥B1C;
(2)若D是AB中点,求证:AC1∥平面B1CD.
已知数列的前n项和为
,
(1)证明:数列是等差数列,并求
;
(2)设,求证: