游客
题文

已知函数其中常数
(1)当时,求函数的单调递增区间;
(2)当时,给出两类直线:,其中为常数,判断这两类直线中是否存在的切线,若存在,求出相应的的值,若不存在,说明理由.
(3)设定义在上的函数在点处的切线方程为,当内恒成立,则称为函数的“类对称点”,当时,试问是否存在“类对称点”,若存在,请至少求出一个“类对称点”的横坐标,若不存在,说明理由.

科目 数学   题型 解答题   难度 较难
知识点: 组合几何
登录免费查看答案和解析
相关试题

某企业有两个分厂生产某种零件,按规定内径尺寸(单位:mm)的值落在(29.94,30.06)的零件为优质品。从两个分厂生产的零件中各抽出500件,量其内径尺寸,的结果如下表:
甲厂:

(1)试分别估计两个分厂生产的零件的优质品率;
(2)由于以上统计数据填下面列联表,并问是否有99%的把握认为“两个分厂生产的零件的质量有差异”。


甲 厂
乙 厂
合计
优质品



非优质品



合计



附:.

下表提供了某厂节能降耗技术改造后生产甲产品过程中记录的产量(吨)与相应的生产能耗(吨标准煤)的几组对照数据:











(1)请画出上表数据的散点图;
(2)请根据上表提供的数据,求出关于的线性回归方程
(3)已知该厂技改前100吨甲产品的生产能耗为90吨标准煤.试根据(2)求出的线性回归方程,预测生产100吨甲产品的生产能耗比技术改造前降低多少吨标准煤? (参考公式见卷首,参考数值:).

已知函数
(1)求函数的单调区间;
(2)若恒成立,试确定实数k的取值范围;
(3)证明:
上恒成立

已知数列的通项公式为,其前项和为
(1)求并猜想的值;
(2)用数学归纳法证明(1)中所猜想的结论.

若函数处取得极值,
(1)求的值;
(2)求上的最大值和最小值.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号