下表提供了某厂节能降耗技术改造后生产甲产品过程中记录的产量(吨)与相应的生产能耗
(吨标准煤)的几组对照数据:
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
(1)请画出上表数据的散点图;
(2)请根据上表提供的数据,求出关于
的线性回归方程
;
(3)已知该厂技改前100吨甲产品的生产能耗为90吨标准煤.试根据(2)求出的线性回归方程,预测生产100吨甲产品的生产能耗比技术改造前降低多少吨标准煤? (参考公式见卷首,参考数值:).
已知复数z="(2+i)(i-3)+4-2i;"
(1)求复数z的共轭复数及|
|;
(2)设复数z1=(a2-2a)+ai是纯虚数,求实数a的值
已知函数,若函数
的最小值是
,
且对称轴是
(1)设求
的值;
(2)在(1)条件下求在区间
的最小值.
已知集合A=x|x>a
,集合B=
.若B
A,则实数a的取值范围是a多少?
已知函数f(x)=x+,且f(1)=2.
(1)求m;
(2)判断f(x)的奇偶性;
(3)函数f(x)在(1,+∞)上是增函数还是减函数?并证明.
一块形状为直角三角形的铁皮,直角边长分别为40cm与60cm现将它剪成一个矩形,并以此三角形的直角为矩形的一个角,问怎样剪法,才能使剩下的残料最少?