(本小题12分)已知两条直线,
,当
为何值时直线
与
分别有下列关系?
(1) ⊥
;
(2)∥
(本小题满分14分)已知椭圆的右焦点为
,且点
在椭圆
上,
为坐标原点.
(Ⅰ)求椭圆的标准方程;
(Ⅱ)设过定点的直线
与椭圆
交于不同的两点
、
,且
为锐角,求直线
的斜率
的取值范围;
(Ⅲ)过椭圆上异于其顶点的任一点
,作圆
的两条切线,切点分别为
(
不在坐标轴上),若直线
在
轴、
轴上的截距分别为
、
,证明:
为定值.
(本小题满分13分)已知实数,函数
.
(1)当时,讨论函数
的单调性;
(2)若在区间
上是增函数,求实数
的取值范围;
(3)若当时,函数
图象上的点均在不等式
,所表示的平面区域内,求实数
的取值范围.
(本小题满分12分)已知数列是等比数列,首项
,公比
,其前
项和为
,且
,
,
成等差数列.
(1)求数列的通项公式;
(2)若数列满足
,
为数列
的前
项和,若
恒成立,求
的最大值.
(本小题满分12分)某市公租房的房源位于三个片区,设每位申请人只申请其中一个片区的房源,且申请其中任一个片区的房源是等可能的,求该市的任意4位申请人中:
(1)恰有2人申请片区房源的概率;
(2)申请的房源所在片区的个数的分布列和期望.
(本小题满分12分)如图,在多面体中,底面
是边长为
的的菱形,
,四边形
是矩形,平面
平面
,
,
和
分别是
和
的中点.
(Ⅰ)求证:平面平面
;
(Ⅱ)求二面角的大小.