(本小题满分10分)选修4-4:坐标系与参数方程
已知曲线C的极坐标方程是,设直线
的参数方程是
(
为参数)。
(Ⅰ)将曲线C的极坐标方程转化为直角坐标方程;
(Ⅱ)设直线与
轴的交点是M,N为曲线C上一动点,求|MN|的最大值。
已知,函数
,
(其中
为自然对数的底数).(1)判断函数
在区间
上的单调性;(2)是否存在实数
,使曲线
在点
处的切线与
轴垂直? 若存在,求出
的值;若不存在,请说明理由.
某工厂师徒二人各加工相同型号的零件2个,是否加工出精品均互不影响.已知师父加工一个零件是精品的概率为,师徒二人各加工2个零件都是精品的概率为
(I)求徒弟加工2个零件都是精品的概率;
(II)求徒弟加工该零件的精品数多于师父的概率;
(III)设师徒二人加工出的4个零件中精品个数为,求
的分布列与均值E
已知向量.
(Ⅰ)求;(Ⅱ)若
,且
的值.
已知数列{}中,
,点
在直线y=x上,其中n=1,2,3….
(Ⅰ)令,求证数列
是等比数列;
(Ⅱ)求数列的通项;
(Ⅲ)设、
分别为数列
、
的前n项和,是否存在实数
,使得数列
为等差数列?若存在,试求出
,若不存在,则说明理由。
甲乙两个班级进行数学考试,按照大于等于85分为优秀,85分以下为非优秀统计成绩后,得到如下的列联表.
优秀 |
非优秀 |
总计 |
|
甲班 |
10 |
||
乙班 |
30 |
||
合计 |
105 |
已知在全部105人中抽到随机抽取1人为优秀的概率为
(Ⅰ)请完成上面的列联表;
(Ⅱ)根据列联表的数据,若按的可靠性要求,能否认为“成绩与班级有关系” .
(Ⅲ)若按下面的方法从甲班优秀的学生抽取一人:把甲班优秀的10名学生从2到11进行编号,先后两次抛掷一枚均匀的骰子,出现的点数之和为被抽取人的序号.试求抽到6或10号的概率.
参考公式: