已知函数;
的图像经过点
,且
时,
有最大值
。
(1)求的解析式;
(2)能否通过平移变换,使得
的图像关于原点对称,如果能,请写出这个变换,如果不能,试说明理由
如图,椭圆的离心率为
,
轴被曲线
截得的线段长等于
的短轴长。
与
轴的交点为
,过坐标原点
的直线
与
相交于点
,直线
分别与
相交于点
。
(1)求、
的方程;
(2)求证:。
(3)记的面积分别为
,若
,求
的取值范围。
已知数列是等差数列,
(1)判断数列是否是等差数列,并说明理由;
(2)如果,试写出数列
的通项公式;
(3)在(2)的条件下,若数列得前n项和为
,问是否存在这样的实数
,使
当且仅当
时取得最大值。若存在,求出
的取值范围;若不存在,说明理由。
已知向量记
.
(1)若,求
的值;
(2)在△ABC中,角A、B、C的对边分别是、
、
,且满足
,若
,试判断△ABC的形状.
已知曲线C上的动点P()满足到定点A(-1,0)的距离与到定点B(1,0)距离之比为
(1)求曲线C的方程。
(2)过点M(1,2)的直线与曲线C交于两点M、N,若|MN|=4,求直线
的方程。