设函数(
),
.
(1) 将函数图象向右平移一个单位即可得到函数
的图象,试写出
的解析式及值域;
(2) 关于的不等式
的解集中的整数恰有3个,求实数
的取值范围;
(3)对于函数与
定义域上的任意实数
,若存在常数
,使得
和
都成立,则称直线
为函数
与
的“分界线”.设
,
,试探究
与
是否存在“分界线”?若存在,求出“分界线”的方程;若不存在,请说明理由.
(本小题满分12分) 设的极小值为
,其导函数
的图像开口向下且经过点
,
(Ⅰ)求的解析式;(Ⅱ)方程
有唯一实数解,求
的取值范围
(Ⅲ)若对都有
恒成立,求实数
的取值范围
(本小题满分12分) 如图,三棱锥A—BPC中,AP⊥PC,AC⊥BC,M为AB中点,D为PB中点,且△PMB为正三角形.
(Ⅰ)求证:DM//平面APC;
(Ⅱ)求 证:平面ABC⊥平面APC;
(Ⅲ)若BC=4,AB=20,求三棱锥D—BCM的体积.
|
(本小题满分12分)
某网站就观众对2010年春晚小品类节目的喜爱程度进行网上调查,其中持各种态度的人数如下表:
喜爱程度 |
喜欢 |
一般 |
不喜欢 |
人数 |
560 |
240 |
200 |
(1)现用分层抽样的方法从所有参与网上调查的观众中抽取了一个容量为n的样本,已知从不喜欢小品的观众中抽取的人数为5人,则n的值为多少?
(2)在(1)的条件下,若抽取到的5名不喜欢小品的观众中有2名为女性,现将抽取到的5名不喜欢小品的观众看成一个总体 ,从中任选两名观众,求至少有一名为女性观众的概率.
(本小题满分12分) 已知,设
=
(1).求
的最小正周期和单调递减区间
(2)设关于的方程
=
在
有两个不相等的实数根,求
的取值范围
设向量
(1)将y表示为x的函数y=f(x)
(2)若tanA,tanB是方程f(x)+4=0的两个实根,A,B是锐角三角形ABC的两个内角,求证:m
(3)对任意实数