数列满足
.
(Ⅰ)若是等差数列,求其通项公式;
(Ⅱ)若满足
,
为
的前
项和,求
为研究气候的变化趋势,某市气象部门统计了共100个星期中每个星期气温的最高温度和最低温度,如下表:
(1)若第六、七、八组的频数、
、
为递减的等差数列,且第一组与第八组的频数相同,求出
、
、
、
的值;
(2)若从第一组和第八组的所有星期中随机抽取两个星期,分别记它们的平均温度为,
,求事件“
”的概率.
如图,测量河对岸的塔高时,可以选与塔底
在同一水平面内的两个测点
与
.现
测得
,并在点
测得塔顶
的仰角为
,求塔高
(用题中所给字母表示).
已知函数,
(1)求的极值;
(2)若关于x的不等式在
上恒成立,求k的取值范围;
(3)证明:.
已知椭圆的两焦点
和短轴的两端点
正好是一正方形的四个顶点,且焦点到椭圆上一点的最近距离为
.
(1)求椭圆的标准方程;
(2)设P是椭圆上任一点,MN 是圆C:的任一条直径,求
的最大值.
已知数列满足:
(1)设,求数列
的通项公式;
(2)求数列的前 n项和.