已知点分别为椭圆
的左、右焦点,点
为椭圆上任意一点,
到焦点
的距离的最大值为
,且
的最大面积为
.
(I)求椭圆的方程。
(II)点的坐标为
,过点
且斜率为
的直线
与椭圆
相交于
两点。对于任意的
是否为定值?若是求出这个定值;若不是说明理由。
(本小题满分12分)如图所示,直角梯形ACDE与等腰直角所在平面互相垂直,F为BC的中点,
,AE∥CD,
.
(Ⅰ)求证:∥平面
;
(Ⅱ)求二面角的余弦值.
(本小题满分12分)已知函数.
(Ⅰ)化简函数的解析式,并求其定义域和单调区间;
(Ⅱ)若,求
的值.
设函数,其中
。
(1)当时,
在
时取得极值,求
;
(2)当时,若
在
上单调递增,求
的取值范围;
(3)证明对任意的正整数,不等式
都成立。
已知椭圆的中心在坐标原点,焦点在
轴上,离心率为
,椭圆的短轴端点和焦点所组成的四边形周长等于8。
(Ⅰ)求椭圆的方程;
(Ⅱ)若过点的直线
与椭圆
相交于
两点(
不是左右顶点),且以
为直径的圆过椭圆
的右顶点,求直线
的方程。
已知数列满足:
且
.
(Ⅰ)求,
,
,
的值及数列
的通项公式;
(Ⅱ)设,求数列
的前
项和
;