将一颗骰子先后抛掷2次,观察向上的点数,求:
(1)两数之和为5的概率;
(2)两数中至少有一个奇数的概率;
(3)以第一次向上点数为横坐标x,第二次向上的点数为纵坐标y的点(x,y)在圆x2+y2=15的内部的概率.
如右图,简单组合体ABCDPE,其底面ABCD为正方形,PD⊥平面ABCD,EC∥PD,且PD=2EC.
(1)若N为线段PB的中点,求证:EN⊥平面PDB;
(2)若=
,求平面PBE与平面ABCD所成的锐二面角的大小.
设△ABC的内角A,B,C所对的边长分别为a,b,c,m=(cosA,cosC),n=(c-2b,
a)且m⊥n.
(1)求角A的大小;
(2)若角B=,BC边上的中线AM的长为
,求△ABC的面积.
已知函数f(x)=-x3+3x2+9x+m
(I)求f(x)的单调递减区间;
(II)若f(x)在区间[-2,2]上的最大值为20,求它在该区间上的最小值.
直线与直线
相交于点P,
求(1)过点P与直线平行的直线方程;
(2)过点P与直线垂直的直线方程。
在等差数列中,已知
,
,
(1)求数列的通项公式
;
(2)设,求数列
前5项的和
.