如图,已知抛物线经过点B(-2,3)、原点O和x轴上另一点A,它的对称轴与x轴交于点C(2,0),求此抛物线的函数关系式;
联结CB, 在抛物线的对称轴上找一点E,使得CB=CE,求点E的坐标;
在(2)的条件下, 联结BE,设BE的中点为G,在抛物线的对称轴上是否存在点P,使得△PBG的周长最小?若存在,求出P点坐标;若不存在,请说明理由.
如图,四边形ABCD内接于⊙O,BD是⊙O的直径,AE⊥CD,垂足为E,DA平分∠BDE.
(1)求证:AE是⊙O的切线;
(2)若∠DBC=30°,DE=1cm,求BD的长.
某商场门前的台阶截面如图所示.已知每级台阶的宽度(如CD)均为30cm,高度(如BE)均为20cm.为了方便残疾人行走,商场决定将其中一个门的门前台阶改造成供轮椅行走的斜坡,并且设计斜坡的倾斜角为9°.请计算从斜坡起点A到台阶前的点B的水平距离.(参考数据:sin9°≈0.16,cos9°≈0.99,tan9°≈0.16)
周华早起锻炼,往返于家与体育场之间,离家的距离y(米)与时间x(分)的关系如图所示.回答下列问题:
(1)填空:周华从体育场返回行走的行走速度时___________米/分;
(2)刘明与周华同时出发,按相同的路线前往体育场,刘明离周华家的距离y(米)与时间x(分)的关系式为y=kx+400,当周华回到家时,刘明刚好到达体育场.
①直接在图中画出刘明离周华家的距离y(米)与时间x(分)的函数图象;
②填空:周华与刘明在途中共相遇___________次;
③求周华出发后经过多少分钟与刘明最后一次相遇.
如图,网格中每一个小正方形的边长为1个单位长度.
(1)请在所给的网格内画出以线段AB、BC为边的菱形ABCD;
(2)填空:菱形ABCD的面积等于________________.
已知2a-3x+1=0,3b-2x-16=0,且a≤4<b,求x的取值范围.