(本题满分12分)某高校从参加今年自主招生考试的学生中随机抽取容量为50的学生成绩样本,得频率分布表如下:
组号 |
分组 |
频数 |
频率 |
第一组 |
![]() |
8 |
0.16 |
第二组 |
![]() |
① |
0.24 |
第三组 |
![]() |
15 |
② |
第四组 |
![]() |
10 |
0.20 |
第五组 |
![]() |
5 |
0.10 |
合 计 |
50 |
1.00 |
(1)写出表中①②位置的数据;
(2)为了选拔出更优秀的学生,高校决定在第三、四、五组中用分层抽样法抽取6名学生进行第二轮考核,分别求第三、四、五各组参加考核人数;
(3)在(2)的前提下,高校决定在这6名学生中录取2名学生,求2人中至少有1名是第四组的概率.
已知圆C的方程为:x2+y2=4
(1)求过点P(2,1)且与圆C相切的直线l的方程;
(2)直线l过点D(1,2),且与圆C交于A、B两点,若|AB|=2,求直线l的方程;
(3)圆C上有一动点M(x0,y0),=(0,y0),若向量
=
+
,求动点Q的轨迹方程.
已知数列{an}的前n项和Sn=﹣n2+kn(其中k∈N+),且Sn的最大值为8.
(1)确定常数k,求an;
(2)求数列的前n项和Tn.
已知射线l1:y=4x(x≥0)和点P(6,4),试在l1上求一点Q使得PQ所在直线l和l1以及直线y=0在第一象限围成的面积达到最小值,并写出此时直线l的方程.
在△ABC中,a、b、c分别是角A、B、C的对边,且,
(1)求角B的大小;
(2)若,求△ABC的面积.
(本小题满分12分,(1)小问4分,(2)小问8分)已知为椭圆
上两动点,
分别为其左右焦点,直线
过点
,且不垂直于
轴,
的周长为
,且椭圆的短轴长为
.
(1)求椭圆的标准方程;
(2)已知点为椭圆
的左端点,连接
并延长交直线
于点
.求证:直线
过定点.