(本题满分12分)某高校从参加今年自主招生考试的学生中随机抽取容量为50的学生成绩样本,得频率分布表如下:
组号 |
分组 |
频数 |
频率 |
第一组 |
![]() |
8 |
0.16 |
第二组 |
![]() |
① |
0.24 |
第三组 |
![]() |
15 |
② |
第四组 |
![]() |
10 |
0.20 |
第五组 |
![]() |
5 |
0.10 |
合 计 |
50 |
1.00 |
(1)写出表中①②位置的数据;
(2)为了选拔出更优秀的学生,高校决定在第三、四、五组中用分层抽样法抽取6名学生进行第二轮考核,分别求第三、四、五各组参加考核人数;
(3)在(2)的前提下,高校决定在这6名学生中录取2名学生,求2人中至少有1名是第四组的概率.
如图,在四棱锥 中, 且 ;平面 平面 , ; 为 的中点, 。求:
(Ⅰ)点
到平面
的距离;
(Ⅱ)二面角
的大小。
如图,已知矩形ABCD,M,N分别是AD,BC的中点,且AM=AB,将矩形沿MN折成直二面角,若P点是线段DN上一动点,求P到BM距离的最小值。
在四面体ABCD中,AB=AD=,BC=CD=3,AC=
,BD=2.
(1)平面ABD与平面BCD是否垂直?证明你的结论;(2)求二面角A-CD-B的正切值。
如图,平面∥
,AB和AC是夹在平面
与
之间的两条线段,AB⊥AC,且AB=2,直线AB与平面
所成角为30°,求线段AC长的取值范围。
.如图,ABCD-A1B1C1D1是棱长为的正方体,M,N,P,Q,R,S分别是AA1,AB,AD,CC1,B1C1,C1D1的中点,求证:平面PMN∥平面QRS。