在两个袋子中分别装有大小、质地完全相同的的卡片. 甲袋中放了3张卡片,卡片上的数字分别为1,2,3;乙袋中放了2张卡片,卡片上的数字分别为4,5.张红和李欣两人做游戏,分别从甲、乙两个袋子中随机地各摸出一张卡片,若所摸出的两张卡片上的数字之和为奇数,则判张红获胜;若两张卡片上的数字之和为偶数,则判李欣获胜.你认为这个游戏公平吗?请写出你的判断,并用列表或画树状图的方法加以说明.
设抛物线的解析式为 ,过点 作 轴的垂线,交抛物线于点 ;过点 , 作 轴的垂线,交抛物线于点 ; ;过点 , 为正整数)作 轴的垂线,交抛物线于点 ,连接 ,得 △ .
(1)求 的值;
(2)直接写出线段 , 的长(用含 的式子表示);
(3)在系列 △ 中,探究下列问题:
①当 为何值时, △ 是等腰直角三角形?
②设 , 均为正整数),问:是否存在 △ 与 △ 相似?若存在,求出其相似比;若不存在,说明理由.
如图,将正 边形绕点 顺时针旋转 后,发现旋转前后两图形有另一交点 ,连接 ,我们称 为"叠弦";再将"叠弦" 所在的直线绕点 逆时针旋转 后,交旋转前的图形于点 ,连接 ,我们称 为"叠弦角", 为"叠弦三角形".
[探究证明]
(1)请在图1和图2中选择其中一个证明:"叠弦三角形" 是等边三角形;
(2)如图2,求证: .
[归纳猜想]
(3)图1、图2中的"叠弦角"的度数分别为 , ;
(4)图 中,"叠弦三角形" 等边三角形(填"是"或"不是"
(5)图 中,"叠弦角"的度数为 (用含 的式子表示)
如图1是一副创意卡通圆规,图2是其平面示意图, 是支撑臂, 是旋转臂,使用时,以点 为支撑点,铅笔芯端点 可绕点 旋转作出圆.已知 .
(1)当 时,求所作圆的半径;(结果精确到
(2)保持 不变,在旋转臂 末端的铅笔芯折断了一截的情况下,作出的圆与(1)中所作圆的大小相等,求铅笔芯折断部分的长度.(结果精确到
(参考数据: , , , ,可使用科学计算器)
甲、乙两人利用扑克牌玩"10点"游戏,游戏规则如下:
①将牌面数字作为"点数",如红桃6的"点数"就是6(牌面点数与牌的花色无关);
②两人摸牌结束时,将所摸牌的"点数"相加,若"点数"之和小于或等于10,此时"点数"之和就是"最终点数";若"点数"之和大于10,则"最终点数"是0;
③游戏结束前双方均不知道对方"点数";
④判定游戏结果的依据是:"最终点数"大的一方获胜,"最终点数"相等时不分胜负.
现甲、乙均各自摸了两张牌,数字之和都是5,这时桌上还有四张背面朝上的扑克牌,牌面数字分别是4,5,6,7.
(1)若甲从桌上继续摸一张扑克牌,乙不再摸牌,则甲获胜的概率为 ;
(2)若甲先从桌上继续摸一张扑克牌,接着乙从剩下的扑克牌中摸出一张牌,然后双方不再摸牌.请用树状图或表格表示出这次摸牌后所有可能的结果,再列表呈现甲、乙的"最终点数",并求乙获胜的概率.
如图是一根可伸缩的鱼竿,鱼竿是用10节大小不同的空心套管连接而成.闲置时鱼竿可收缩,完全收缩后,鱼竿长度即为第1节套管的长度(如图1所示):使用时,可将鱼竿的每一节套管都完全拉伸(如图2所示).图3是这跟鱼竿所有套管都处于完全拉伸状态下的平面示意图.已知第1节套管长 ,第2节套管长 ,以此类推,每一节套管均比前一节套管少 .完全拉伸时,为了使相邻两节套管连接并固定,每相邻两节套管间均有相同长度的重叠,设其长度为 .
(1)请直接写出第5节套管的长度;
(2)当这根鱼竿完全拉伸时,其长度为 ,求 的值.