已知椭圆,抛物线
,点
是
上的动点,过点
作抛物线
的切线
,交椭圆
于
两点,
(1)当的斜率是
时,求
;
(2)设抛物线的切线方程为
,当
是锐角时,求
的取值范围.
如图,已知过点的抛物线
与过点
的动直线
相交于
、
两点.
(Ⅰ)求直线与直线
的斜率的乘积;
(Ⅱ)若,求证:△
的周长为定值.
如图,在四棱锥中,平面PAD⊥平面ABCD,
,
,E是BD的中点.
(Ⅰ)求证:EC//平面APD;
(Ⅱ)求BP与平面ABCD所成角的正切值;
(Ⅲ)求二面角的正弦值.
已知等差数列数列的前
项和为
,等比数列
的各项均为正数,公比是
,且满足:
.
(Ⅰ)求与
;
(Ⅱ)设,若
满足:
对任意的
恒成立,求
的取值范围.
中,三个内角A、B、C所对的边分别为
、
、
,若
,
.
(Ⅰ)求角的大小;
(Ⅱ)已知的面积为
,求函数
的最大值.
已知函数,设方程
有两个实数根
(1)若果,设函数
的对称轴为
,求证:
(2)如果的两个实数根相差2,求实数b的取值范围。