(本小题满分15分)设椭圆的左、右焦点分别为,上顶点为,过点与垂直的直线交轴负半轴于点,且.(Ⅰ)求椭圆的离心率;(Ⅱ)若过三点的圆恰好与直线相切,求椭圆的方程;(Ⅲ)在(Ⅱ)的条件下,过右焦点作斜率为的直线与椭圆交于两点,在轴上是否存在点使得以邻边的平行四边形是菱形,如果存在,求出的取值范围;如果不存在,说明理由.
已知,讨论函数的极值点的个数.
已知数列满足 (I)证明:数列是等比数列; (II)求数列的通项公式; (II)若数列满足证明是等差数列。
如图,四棱锥P-ABCD的底面是正方形, (1)证明MF是异面直线AB与PC的公垂线; (2)若,求直线AC与平面EAM所成角的正弦值
设一汽车在前进途中要经过4个路口,汽车在每个路口遇到绿灯的概率为,遇到红灯(禁止通行)的概率为假定汽车只在遇到红灯或到达目的地才停止前进,表示停车时已经通过的路口数,求: (1)的概率的分布列及期望E; (2 )停车时最多已通过3个路口的概率
若函数的最大值为2,试确定常数a的值.
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号