游客
题文

近年来,我国机动车拥有量呈现快速增加的趋势,可与之配套的基础设施建设速度相对迟缓,交通拥堵问题已经成为制约城市发展的重要因素,为了解某市的交通状况,现对其6条道路进行评估,得分分别为5、6、7、8、9、10规定评估的平均得分与全市的总体交通状况等级如下表:

评估的平均得分
[0,6]
[6,8]
[8,10]
全市的总体交通
不合格
合格
优秀

 (1)求本次评估的平均得分,并参照上表估计该市的总体交通状况等级。
(2)用简单随机抽样方法从6条道路中抽取2条,它们的得分组成一个样本,求该样本的平均数与总体的平均数之差的绝对值不超过0.5的概率

科目 数学   题型 解答题   难度 容易
登录免费查看答案和解析
相关试题

(本小题满分14分)已知椭圆,其中为左、右焦点,O为坐标原点.直线l与椭圆交于两个不同点.当直线l过椭圆C右焦点F2且倾斜角为时,原点O到直线l的距离为.又椭圆上的点到焦点F2的最近距离为.

(1)求椭圆C的方程;
(2)以OP,OQ为邻边做平行四边形OQNP,当平行四边形OQNP面积为时,求平行四边形OQNP的对角线之积的最大值;
(3)若抛物线为焦点,在抛物线C2上任取一点S(S不是原点O),以OS为直径作圆,交抛物线C2于另一点R,求该圆面积最小时点S的坐标.

(本小题满分13分)已知函数,其中e为自然对数的底数.
(1)求曲线在点处的切线方程;
(2)若对任意,不等式恒成立,求实数m的取值范围;
(3)试探究当时,方程的解的个数,并说明理由.

(本小题满分12分)已知数列中,
(1)求证:数列是等比数列;
(2)若是数列的前n项和,求满足的所有正整数n.

(本小题满分12分)学校为测评班级学生对任课教师的满意度,采用“100分制”打分的方式来计分.现从某班学生中随机抽取10名,以下茎叶图记录了他们对某教师的满意度分数(以十位数字为茎,个位数字为叶):规定若满意度不低于98分,测评价该教师为“优秀”.

(1)求从这10人中随机选取3人,至多有1人评价该教师是“优秀”的概率;
(2)以这10人的样本数据来估计整个班级的总体数据,若从该班任选3人,记表示抽到评价该教师为“优秀”的人数,求的分布列及数学期望.

(本小题满分12分)在如图所示的空间几何体中,平面平面ABC,是边长为2的等边三角形,BE=2,BE和平面ABC所成的角为60°,且点E在平面ABC上的射影落在的平分线上.

(1)求证:DE//平面ABC;
(2)求二面角的余弦值.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号