近年来,我国机动车拥有量呈现快速增加的趋势,可与之配套的基础设施建设速度相对迟缓,交通拥堵问题已经成为制约城市发展的重要因素,为了解某市的交通状况,现对其6条道路进行评估,得分分别为5、6、7、8、9、10规定评估的平均得分与全市的总体交通状况等级如下表:
评估的平均得分 |
[0,6] |
[6,8] |
[8,10] |
全市的总体交通 |
不合格 |
合格 |
优秀 |
(1)求本次评估的平均得分,并参照上表估计该市的总体交通状况等级。
(2)用简单随机抽样方法从6条道路中抽取2条,它们的得分组成一个样本,求该样本的平均数与总体的平均数之差的绝对值不超过0.5的概率
(本小题满分12分)
已知函数
(1)若是定义域上的单调函数,求
的取值范围;
(2)若在定义域上有两个极值点
、
,证明:
(本小题满分12分)
已知椭圆的离心率为
,右焦点为(
,0),斜率为1的直线
与椭圆G交与A、B两点,以AB为底边作等腰三角形,顶点为
.
(1)求椭圆G的方程;
(2)求的面积.
(本小题满分12分)
甲打靶射击,有4发子弹,其中有一发是空弹(“空弹”即只有弹体没有弹头的子弹).
(1)如果甲只射击次,求在这一枪出现空弹的概率;
(2)如果甲共射击次,求在这三枪中出现空弹的概率;
(3)如果在靶上画一个边长为的等边
,甲射手用实弹瞄准了三角形
区域随机射击,且弹孔都落在三角形
内。求弹孔与
三个顶点的距离都大于1的概率(忽略弹孔大小).
(本小题满分12分)
等比数列的各项均为正数,且
(1)求数列的通项公式.
(2)设 ,求数列
的前n项和
.
(本小题满分10分)
若关于的不等式
的解集是
,
的定义域是
,若
,求实数
的取值范围。