一个盒子中装有4张卡片,每张卡片上写有1个数字,数字分别是1、2、3、4,现从盒子中随机抽取卡片.
(1)若一次从中随机抽取3张卡片,求3张卡片上数字之和大于或等于7的概率;
(2)若第一次随机抽1张卡片,放回后再随机抽取1张卡片,求两次抽取中至少一次抽到
数字2的概率
在△ABC中,a,b,c分别是内角A,B,C的对边,.
(1)若,求
的值;
(2)若是边
中点,且
,求边
的长.
已知函数f (t)=log2(2-t)+的定义域为D.
(1)求D;
(2)若函数g (x)=x2+2mx-m2在D上存在最小值2,求实数m的值.
已知向量m=(sinωx,cosωx),n=(cosωx,cosωx),其中ω>0,函数2m·n-1的最小正周期为π.
(1)求ω的值;
(2)求函数在[
,
]上的最大值.
(本小题满分12分)已知函数
(1)若函数无零点,求实数
的取值范围;
(2)若存在两个实数且
,满足
,
,求证
.
(本题小满分12分)已知函数
(1)讨论函数的单调区间;
(2)设,当
时,若对任意的
,(
为自然对数的底数)都有
,求实数
的取值范围.