已知是函数
的一个极值点.
(1)求;(2)求函数
的单调区间;
(3)若直线与函数
的图象有
个交点,求
的取值范围.
已知,直线l:y=-2,动点P到直线l的距离为d,且d=
.
(Ⅰ)求动点P的轨迹方程;
(Ⅱ)直线m:y=与点P的轨迹交于M、N两点,当
时,求直线m的倾斜角α的取值范围;
(Ⅲ)设直线h与点P的轨迹交于C、D两点,写出命题“如果直线h过点B,那么=-12”的逆命题,并判断该逆命题的真假,请说明理由.
已知在点
处的切线方程与直线
垂直.
(Ⅰ)若,
恒成立,求实数
的取值范围.
(Ⅱ)当时,求证:
.
设函数,数列
满足
(Ⅰ)求数列的通项公式;
(Ⅱ)记试比较
与Q的大小关系,并说明理由.
下图是一几何体的直观图、主视图、俯视图、左视图.
(Ⅰ)若为
的中点,求证:
面
;
(Ⅱ)证明:∥面
;
(Ⅲ)求面与面
所成的二面角(锐角)的余弦值.
山东省实验中学为了活跃师生的课外文化生活,在2015年3月中旬举办了一次知识竞赛,经过层层筛选,最后五名同学进入了总决赛.在进行笔答题知识竞赛中,最后一个大题是选做题,要求参加竞赛的五名选手从2道题中选做一道进行解答,假设这5位选手选做每一题的可能性均为,求
(Ⅰ)其中甲乙2位选手选做同一道题的概率.
(Ⅱ)设这5位选手中选做第1题的人数为x,求x的分布列及数学期望.