一个盒子装有六张卡片,上面分别写着如下六个函数:,
,
,
,
,
.
(Ⅰ)从中任意拿取张卡片,若其中有一张卡片上写着的函数为奇函数。在此条件下,求两张卡片上写着的函数相加得到的新函数为奇函数的概率;
(Ⅱ)现从盒子中逐一抽取卡片,且每次取出后均不放回,若取到一张写有偶函数的卡片则停止抽取,否则继续进行,求抽取次数的分布列和数学期望.
(本小题满分12分)已知椭圆+
=1(
>
>
)的离心率为
,且过点(
,
).
(1)求椭圆方程;
(2)设不过原点的直线
:
,与该椭圆交于
、
两点,直线
、
的斜率依次为
、
,满足
,试问:当
变化时,
是否为定值?若是,求出此定值,并证明你的结论;若不是,请说明理由.
如图,在三棱锥底面ABC,且SB=
分别是SA、SC的中点.
(Ⅰ)求证:平面平面BCD;
(Ⅱ)求二面角的平面角的大小.
某大学志愿者协会中,数学学院志愿者有8人,其中含5名男生,3名女生;外语学院志愿者有4人,其中含1名男生,3名女生.现采用分层抽样的方法(层内采用简单随机抽样)从两个学院中共抽取3名同学,到希望小学进行支教活动.
(1)求从数学学院抽取的同学中至少有1名女同学的概率;
(2)记为抽取的
名同学中男同学的人数,求随机变量
的分布列和数学期望.
在中,
是
中点,已知
.
(1)判断的形状;
(2)若的三边长是连续三个正整数,求
的余弦值.
(本小题满分12分)已知函数.
(1)若函数在定义域内为增函数,求实数
的取值范围;
(2)在(1)的条件下,若,
,
,求
的极小值;
(3)设,若函数
存在两个零点
,且满足
,问:函数
在点
处的切线能否平行于
轴?若能,求出该切线方程,若不能,请说明理由.