对“四地六校”的高二年段学生是爱好体育还是爱好文娱进行调查,共调查了40人,其中男生25人,女生15人。男生中有15人爱好体育,另外10人爱好文娱。女生中有5人爱好体育,另外10人爱好文娱;
(1)根据以上数据制作一个2×2的列联表;
(2)在多大的程度上可以认为性别与是否爱好体育有关系?
附: (此公式也可写成
)
参考数据:
![]() |
0.25 |
0.15 |
0.10 |
0.05 |
0.025 |
![]() |
1.323 |
2.072 |
2. 706 |
3. 841 |
5. 024 |
(本小题满分14分)在中,
的坐标分别是
,点
是
的重心,
轴上一点
满足
,且
.
(1)求的顶点
的轨迹
的方程;
(2)直线与轨迹
相交于
两点,若在轨迹
上存在点
,使四边形
为平行四边形(其中
为坐标原点),求
的取值范围.
(本小题满分13分)已知函数.
(1)当时,求曲线
在
处的切线方程;
(2)设函数,求函数
的单调区间;
(3)若,在
上存在一点
,使得
成立,求
的取值范围.
(本小题满分12分)如图,在中,已知
在
上,且
又
平面
.
(1)求证:⊥平面
;
(2)求二面角的余弦值.
(本小题满分12分)甲乙两人进行围棋比赛,约定先连胜两局者直接赢得比赛,若赛完局仍未出现连胜,则判定获胜局数多者赢得比赛.假设每局甲获胜的概率为
,乙获胜的概率为
,各局比赛结果相互独立.
(1)求甲在局以内(含
局)赢得比赛的概率;
(2)记为比赛决出胜负时的总局数,求
的分布列和期望.
(本小题满分12分)已知数列是等比数列,首项
,公比
,其前
项和为
,且
,
,
成等差数列.
(1)求数列的通项公式;
(2)若数列满足
,
为数列
的前
项和,若
恒成立,求
的最大值.