(本小题满分16分)
已知椭圆的离心率为
,一条准线
.
(1)求椭圆的方程;
(2)设O为坐标原点,是
上的点,
为椭圆
的右焦点,过点F作OM的垂线与以OM为直径的圆
交于
两点.
①若,求圆
的方程;
②若是l上的动点,求证点
在定圆上,并求该定圆的方程.
定义在上的函数
,如果满足:对任意
,存在常数
,都有
成立,则称
是
上的有界函数,其中
称为函数
的一个上界.已知函数
,
.
(1)若函数为奇函数,求函数
在区间
上的所有上界构成的集合;
(2)若为函数
在
上的一个上界,求实数
的取值范围.
已知函数对任意实数
、
都有
,且
,当
时,
.
(1)判断的奇偶性,并证明;
(2)判断在
上的单调性,并证明;
(3)若,求满足不等式
的实数
的取值范围.
一块边长为的正方形铁皮按如图所示的阴影部分裁下,然后用余下的四个全等的等腰三角形加工成一个正四棱锥(底面是正方形,从顶点向底面引垂线,垂足是底面中心的四棱锥)形容器.
(1)试把容器的容积表示成底边边长
的函数;
(2)当时,求此容器的内切球(与四个侧面和底面均相切的球)的半径
.
如图所示,在直三棱柱中,
,
,
,
,点
是
的中点.
(1)求证:;
(2)求证:平面
;
(3)求异面直线与
所成角的余弦值.
如图是一个奖杯的三视图(单位:),底座是正四棱台.
(1)求这个奖杯的体积;(计算结果保留
)
(2)求这个奖杯底座的侧面积.