游客
题文

函数,过曲线上的点的切线方程为.
(1)若时有极值,求的表达式;
(2)在(1)的条件下,求在[-3,1]上的最大值;
(3)若函数在区间[-2,1]上单调递增,求实数b的取值范围.

科目 数学   题型 解答题   难度 中等
登录免费查看答案和解析
相关试题

已知函数 f ( x ) = x - a 2 + | x - 2 a + 1 | .

(1)当 a = 2 时,求不等式 f ( x ) 4 的解集;

(2)若 f ( x ) 4 ,求 a的取值范围.

已知曲线C1C2的参数方程分别为C1θ为参数),C2 x = t + 1 t , y = t - 1 t t为参数).

(1)将C1C2的参数方程化为普通方程;

(2)以坐标原点为极点,x轴正半轴为极轴建立极坐标系.设C1C2的交点为P,求圆心在极轴上,且经过极点和P的圆的极坐标方程.

已知函数fx)=2lnx+1.

(1)若fx)≤2x+c,求c的取值范围;

(2)设a>0时,讨论函数gx)= f ( x ) - f ( a ) x - a 的单调性.

如图,已知三棱柱 ABC- A 1 B 1 C 1的底面是正三角形,侧面 BB 1 C 1 C是矩形, MN分别为 BCB 1 C 1的中点, PAM上一点.过 B 1 C 1P的平面交 ABE,交 ACF

(1)证明: AA 1// MN,且平面 A 1 AMN⊥平面 EB 1 C 1 F

(2)设 O为△ A 1 B 1 C 1的中心,若 AO= AB=6, AO//平面 EB 1 C 1 F,且∠ MPN= π 3 ,求四棱锥 B- EB 1 C 1 F的体积.

已知椭圆C1 x 2 a 2 + y 2 b 2 = 1 (a>b>0)的右焦点F与抛物线C2的焦点重合,C1的中心与C2的顶点重合.过F且与x轴重直的直线交C1AB两点,交C2CD两点,且|CD|= 4 3 |AB|.

(1)求C1的离心率;

(2)若C1的四个顶点到C2的准线距离之和为12,求C1C2的标准方程.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号