在数列{an}中,a1=1,当n≥2时,an,Sn,Sn-成等比数列.
(1)求a2,a3,a4,并推出an的表达式;(2)用数学归纳法证明所得的结论;
(3)求数列{an}前n项的和.
(本小题满分12分)
如图,四棱锥的底面
为菱形,
平面
,
,
分别为
的中点,
.
(Ⅰ)求证:平面
.
(Ⅱ)求三棱锥的体积.
本小题满分12分)
为调查某市学生百米运动成绩,从该市学生中按照男女生比例随机抽取50名学生进行百米测试,学生成绩全部都介于13秒到18秒之间,将测试结果按如下方式分成五组,第一组,第二组
……第五组
,如图是按上述分组方法得到的频率分布直方图.
(Ⅰ)求这组数据的众数和中位数(精确到0.1);
(II)设表示样本中两个学生的百米测
试成绩,已知
求事件“”的概率.
(Ⅲ) 根据有关规定,成绩小于16秒为达标.
如果男女生使用相同的达标标准,则男女生达标情况如下表
性别 是否达标 |
男 |
女 |
合计 |
达标 |
![]() |
![]() |
_____ |
不达标 |
![]() |
![]() |
_____ |
合计 |
______ |
______ |
![]() |
根据上表数据,能否有99%的把握认为“体育达标与性别有关”?若有,你能否提出一个更好的解决方法来?
(本小题满分10分)选修4—5:不等式选讲
设(
).
(Ⅰ)当时,求函数
的定义域;
(Ⅱ)若当时,
恒成立,求实数
的取值范围.
本小题满分10分)选修4—4:坐标系与参数方程
如图,已知点,
,圆
是以
为直径的圆,直线
:
(
为参数).
(Ⅰ)写出圆的普通方程并选取适当的参数改写为参数方程;
(Ⅱ)过原点作直线
的垂线,垂足为
,若动点
满足
,当
变化时,求点
轨迹的参数方程,并指出它是什么曲线.
(本小题满分10分)选修4—1:几何证明选讲
如图,已知与圆
相切于点
,半径
,
交
于
点
,
(Ⅰ)求证:;
(Ⅱ)若圆的半径为3,
,求
的长度.