如图,是底部
不可到达的一个塔型建筑物,
为塔的最高点.现需在塔对岸测出塔高
, 甲、乙两同学各提出了一种测量方法,甲同学的方法是:选与塔底
在同一水平面内的一条基线
,使
不在同一条直线上,测出
及
的大小(分别用
表示测得的数据)以及
间的距离(用
表示测得的数据),另外需在点
测得塔顶
的仰角(用
表示测量的数据),就可以求得塔高
.乙同学的方法是:选一条水平基线
,使
三点在同一条直线上.在
处分别测得塔顶
的仰角(分别用
表示测得的数据)以及
间的距离(用
表示测得的数据),就可以求得塔高
.请从甲或乙的想法中选出一种测量方法,写出你的选择并按如下要求完成测量计算:①画出测量示意图;②用所叙述的相应字母表示测量数据,画图时
按顺时针方向标注,
按从左到右的方向标注;③求塔高
.
已知为正数,
,且
,求证:
.
20世纪30年代,里克特制订了一种表明地震能量大小的尺度,就是使用测震仪衡量地震能量的等级,地震能量越大,测震仪记录的地震曲线的振幅就越大.这就是我们常说的里氏震级,其计算公式为
,其中,
是被测地震的最大振幅,
是“标准地震”的振幅(使用标准地震振幅是为了修正测震仪距实际震中的距离造成的偏差).
(1)假设在一次地震中,一个距离震中100千米的测震仪记录的地震最大振幅
是20,此时标准地震的振幅是,计算这次地震的震级(精确到
);
(2)5级地震给人的震感已比较明显,计算级地震的最大振幅是5级地震
的最大振幅的多少倍(精确到1).
已知函数在区间
上恒为正值,
求实数的取值范围.
若,求
的值.
设,
,求证:
(1);
(2).