游客
题文

(本小题共13分)已知椭圆的右焦点为为椭圆的上顶点,为坐标原点,且△是等腰直角三角形.
(Ⅰ)求椭圆的方程;
(Ⅱ)是否存在直线交椭圆于两点, 且使点为△的垂心(垂心:三角形三边高线的交点)?若存在,求出直线的方程;若不存在,请说明理由.

科目 数学   题型 解答题   难度 中等
登录免费查看答案和解析
相关试题

已知函数在(1,+∞)上是增函数,且a>0.
(1)求a的取值范围;
(2)求函数在[0,+∞)上的最大值;

已知双曲线与椭圆有共同的焦点,点在双曲线上.
(1)求双曲线的方程;
(2)以为中点作双曲线的一条弦,求弦所在直线的方程.

设命题p:(4x-3)2≤1;命题q:x2-(2a+1)x+a(a+1)≤0,若p是q的必要不充分条件,求实数a的取值范围.

已知函数
(1)解不等式
(2)若对于,有.求证:

在直角坐标系中,直线的参数方程为(t为参数),再以原点为极点,以x正半轴为极轴建立坐标系,并使得它与直角坐标系有相同的长度单位,在该极坐标系中圆C的方程为
(1)求圆C的直角坐标方程;
(2)设圆C与直线将于点,若点的坐标为,求的值.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号