(本小题共13分)已知椭圆的右焦点为,为椭圆的上顶点,为坐标原点,且△是等腰直角三角形.(Ⅰ)求椭圆的方程;(Ⅱ)是否存在直线交椭圆于,两点, 且使点为△的垂心(垂心:三角形三边高线的交点)?若存在,求出直线的方程;若不存在,请说明理由.
化简
已知A、B、C、P为平面内四点,求证:A、B、C三点在一条直线上的充要条件是存在一对实数m、n,使=m+n,且m+n=1.
设是不共线的向量,已知向量,若A,B,D三点共线,求k的值
已知函数是定义域为R的偶函数,其图像均在x轴的上方,对任意的,都有,且,又当时,其导函数恒成立。 (Ⅰ)求的值; (Ⅱ)解关于x的不等式:,其中
设x1、x2、y1、y2是实数,且满足x12+x22≤1, 证明不等式(x1y1+x2y2-1)2≥(x12+x22-1)(y12+y22-1).
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号