(本小题共13分)已知椭圆的右焦点为
,
为椭圆的上顶点,
为坐标原点,且△
是等腰直角三角形.
(Ⅰ)求椭圆的方程;
(Ⅱ)是否存在直线交椭圆于
,
两点, 且使点
为△
的垂心(垂心:三角形三边高线的交点)?若存在,求出直线
的方程;若不存在,请说明理由.
从8名运动员中选4人参加4×100米接力赛,在下列条件下,各有多少种不同的排法?(用数字结尾)
(1)甲、乙两人必须跑中间两棒;
(2)若甲、乙两人只有一人被选且不能跑中间两棒;
(3)若甲、乙两人都被选且必须跑相邻两棒.
已知函数.
(1)求函数的图像在点
处的切线方程;
(2)若,且
对任意
恒成立,求
的最大值;
(3)当时,证明
.
如图,已知直线与抛物线
和圆
都相切,
是
的焦点.
(1)求与
的值;
(2)设是
上的一动点,以
为切点作抛物线
的切线
,直线
交
轴于点
,以
为邻边作平行四边形
,证明:点
在一条定直线上;
(3)在(2)的条件下,记点所在的定直线为
,直线
与
轴交点为
,连接
交抛物线
于
两点,求
的面积
的取值范围.
(如图,已知平面
,
∥
,
是正三角形,
且.
(1)设是线段
的中点,求证:
∥平面
;
(2)求直线与平面
所成角的余弦值.
已知数列满足
,数列
满足
.
(1)求证:数列是等差数列;
(2)设,求满足不等式
的所有正整数
的值.