已知椭圆的离心率为
,其左右焦点分别为
、
,
,设点
,
是椭圆上不同两点,且这两点与坐标原点的连线的斜率之积
.(1)求椭圆
的方程;(2)求证:
为定值,并求该定值.
(本小题满分14分)在中学生综合素质评价某个维度的测评中,分“优秀、合格、尚待改进”三个等级进行学生互评.某校高一年级有男生500人,女生400人,为了了解性别对该维度测评结果的影响,采用分层抽样方法从高一年级抽取了45名学生的测评结果,并作出频数统计表如下:
(1)从表二的非优秀学生中随机选取2人交谈,求所选2人中恰有1人测评等级为合格的概率;
(2)由表中统计数据填写下边列联表,并判断是否有
的把握认为“测评结果优秀与性别有关”.
男生 |
女生 |
总计 |
|
优秀 |
|||
非优秀 |
|||
总计 |
参考数据与公式:,其中
.
临界值表:
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
(本小题满分12分)如图ABCD是正方形,O是正方形的中心,PO底面 ABCD,E是PC的中点.
求证:(1)PA//平面BDE;(2)平面PAC平面BDE.
(本小题满分12分)已知函数.
(1)求函数的最小正周期;
(2)求函数在区间
上的最小值和最大值.
已知函数,
(其中
).
(Ⅰ)如果函数和
有相同的极值点,求
的值,并直接写出函数
的单调区间;
(Ⅱ)求方程在区间
上实数解的个数.