(本小题满分14分)
已知A(-1,2)为抛物线C: y=2x2上的点,直线过点A,且与抛物线C 相切,直线
:x=a(a≠-1)交抛物线C于B,交直线
于点D.
(1)求直线的方程.
(2)设的面积为S1,求
及S1的值.
(3)设由抛物线C,直线所围成的图形的面积为S2,求证S1:S2的值为与a无关的常数.
(本小题满分12分)如图,在正三棱柱中,
分别是
的中点,
.
(Ⅰ)在棱上是否存在点
使
?如果存在,试确定它的位置;如果不存在,请说明理由;
(Ⅱ)求截面与底面
所成锐二面角的正切值;
(Ⅲ)求点到截面
的距离.
(本小题满分12分)甲、乙两篮球运动员进行定点投篮,每人各投4个球,甲投篮命中的概率为,乙投篮命中的概率为
.
(Ⅰ)求甲至多命中2个且乙至少命中2个的概率;
(Ⅱ)若规定每投蓝一次命中得3分,未命中得-1分,求乙所得分数的概率分布和数学期望.
(本小题满分12分)在直角坐标平面内,已知点,其中
.
(Ⅰ)若,求角
的弧度数;
(Ⅱ)若,求
的值.
23.(本小题满分10分)
将一枚硬币连续抛掷次,每次抛掷互不影响. 记正面向上的次数为奇数的概率为
,正面向上的次数为偶数的概率为
.
(Ⅰ)若该硬币均匀,试求与
;
(Ⅱ)若该硬币有暇疵,且每次正面向上的概率为,试比较
与
的大小.
22.(本小题满分10分)
已知动圆过点
且与直线
相切.
(Ⅰ)求点的轨迹
的方程;
(Ⅱ)过点作一条直线交轨迹
于
两点,轨迹
在
两点处的切线相交于点
,
为线段
的中点,求证:
轴.