.(本小题满分12分)
在△ABC中,顶点A(-1,0),B(1,0),动点D,E满足:
①;②|
|=
|
|=
|
|③
与
共线.
(Ⅰ)求△ABC顶点C的轨迹方程;
(Ⅱ) 若斜率为1直线l与动点C的轨迹交于M,N两点,且·
=0,求直线l的方程.
(本题满分14分) 已知正四棱锥P-ABCD中,底面是边长为2的正方形,高为.M为线段PC的中点.
(Ⅰ) 求证:PA∥平面MDB;
(Ⅱ) N为AP的中点,求CN与平面MBD所成角的正切值.
(本题满分14分) 设等差数列{an}的首项a1为a,公差d=2,
前n项和为Sn.
(Ⅰ) 若S1,S2,S4成等比数列,求数列{an}的通项公式;
(Ⅱ) 证明:n∈N*, Sn,Sn+1,Sn+2不构成等比数列.
(本题满分14分) 设向量α=(sin 2x,sin x+cos x),β=(1,sin x-cos x),其中x∈R,函数f(x)=α
β.
(Ⅰ) 求f(x)的最小正周期;
(Ⅱ) 若f(θ)=,其中0<θ<
,求cos(θ+
)的值.
已知函数,
(1) 设(其中
是
的导函数),求
的最大值;
(2) 证明: 当时,求证:
;
(3) 设,当
时,不等式
恒成立,求
的最大值
在数列中,
,
,且已知函数
在
处取得极值。
⑴证明:数列是等比数列
⑵求数列的通项
和前
项和