假设关于某设备的使用年限x和所支出的维修费用y(万元)有如下表格所示统计数据,由资料显示y对x呈线性相关关系。
x |
3 |
4 |
5 |
6 |
y |
2.5 |
3 |
4 |
4.5 |
(Ⅰ)请根据上表的数据画出散点图并用最小二乘法求出y关于x的线性回归方程?
(Ⅱ)试根据(1)求出的线性回归方程,预测使用年限为10年时,维修费用是多少?
(本小题满分13分)
已知椭圆的焦点分别为
,且过点
.
(1)求椭圆的标准方程;
(2)设为椭圆
内一点,直线
交椭圆
于
两点,且
为线段
的中点,求直线
的方程.
本小题满分13分)
先后随机投掷2枚正方体(六面分别标有)骰子,其中
表示第
枚骰子出现的点数,
表示第
枚骰子出现的点数。
(1)求点在直线
上的概率;
(2)求点满足
的概率。
某工厂生产一种机器的固定成本为5000元,且每生产100部,需要增加投入2500元,对销售市场进行调查后得知,市场对此产品的需求量为每年500部。已知年销售收入为,其中x是产品售出的数量
。
(1)若x为年产量,y 表示年利润,求
的表达式。(年利
润=年销售收入—投资成本(包括固定成本))
(2)当年产量为何值时,工厂的年利润最大,其最大值是多少?
解关于的不等式:
(1) 2≤|3x-2|<8 (x
Z )(2) x2-(a+1)x+a<0,.
(本小题满分12分)
已知p:方程x2+mx+1=0有两个不等的负实根,q:方程4x2+4(m-2)x+1=0无实根。若p或q为真,p且q为假。求实数m的取值范围。