已知,点
在函数
的图象上,
.
(1)求数列的通项公式;
(2)数列的前
项和为
,且满足
,求证:
为等差数列;
(3)求的值,使得数列
是等差数列,并求出
的通项公式.
(本题满分12分)
某风景区有40辆自行车供游客租赁使用,管理这些自行车的费用是每日72元。根据经验,若每辆自行车的日租金不超过6元,则自行车可以全部租出;若超出6元,则每超过1元,租不出的自行车就增加3辆。为了便于结算,每辆自行车的日租金(元)只取整数,并且要求出租自行车一日的总收入必须高于这一日的管理费用,用
(元)表示出租自行车的日净收入(即一日中出租自行车的总收入减去管理费用后的所得)。
(1)求函数的解析式及其定义域;
(2)试问当每辆自行车的日租金定为多少元时,才能使一日的净收入最多?
(本题满分12分)
在中,角
所对的边分别为
,且满足
,
.
(1)求的面积;
(2)若,求
的值.
(本题满分12分)
已知集合,
,
.
(1)求,
;
(2)若,求
的取值范围.
(本小题满分14分)
已知函数.
(1)讨论函数在定义域内的极值点的个数;
(2)若函数在
处取得极值,对
,
恒成立,
求实数的取值范围;
(3)当时,求证:
.
(本小题满分13分)
已知函数.
(1) 若函数的定义域和值域均为
,求实数
的值;
(2) 若在区间
上是减函数,且对任意的
,
总有,求实数
的取值范围;
(3) 若在
上有零点,求实数
的取值范围.