在某次考试中共有12道选择题,每道选择题有4个选项,其中只有一个是正确的,评分标准规定:“每题只选一项,答对得5分,不答或答错得0分”。某考生每道题给出一个答案,并已确定有9道题的答案是正确的,而其余题中,有一道题可判断出两个选项是错误的,有一道题可以判断出一个选项是错误的,还有一道题因不了解题意只能乱猜,试求出该考生;
(1)选择题得60分的概率;
(2)选择题所得分数的数学期望。
小明家订了一份报纸,寒假期间他收集了每天报纸送达时间的数据,并绘制成频率分布直方图,如图所示.
(1)根据图中的数据信息,写出众数;
(2)小明的父亲上班离家的时间在上午
之间,而送报人每天在
时刻前后
半小时内把报纸送达(每个时间点送达的可能性相等).
①求小明的父亲在上班离家前能收到报纸(称为事件)的概率;
②求小明的父亲周一至周五在上班离家前能收到报纸的天数的数学期望.
如图,在四棱锥中,
平面
,底面
是直角梯形,
,
∥
,且
,
,
为
的中点.
(1)设与平面
所成的角为
,二面角
的大小为
,求证:
;
(2)在线段上是否存在一点
(与
两点不重合),使得
∥平面
? 若存在,求
的长;若不存在,请说明理由.
已知数列是等差数列,
是等比数列,其中
,
,且
为
、
的等差中项,
为
、
的等差中项.
(1)求数列与
的通项公式;
(2)记,求数列
的前
项和
.
已知向量,设函数
(1)求函数的单调递增区间;
(2)在中,角
、
、
的对边分别为
、
、
,且满足
,
,求
的值.
设函数.
(1)求的最小正周期。
(2)若函数与
的图像关于直线
对称,求当
时
的最大值.